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Abstract

We characterize the relativistic hyper-entanglement of two interacting massive
fermions governed by the Dirac equation. In particular, we show how a
certain Lorentz invariant coupling leads to the simultaneous entanglement of
the fermionic spin and orbital degrees of freedom. Besides, this notion of
hyper-entanglement turns out to be independent of the inertial reference frame.
We also describe how this relativistic pairing mechanism leads to a bound
fermionic pair which shows an interesting resemblance to a superconducting
Cooper pair.

PACS numbers: 03.67.−a, 42.50.−p, 03.67.Mn, 03.65.Pm

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The existence of correlations of a pure quantum mechanical nature can be considered as one
of the most non-classical manifestations of quantum mechanics [1]. These singular quantum
correlations, known as entanglement, have become an essential resource in the emerging fields
of quantum information and computation [2, 3]. Entanglement is the key ingredient of various
communication protocols, such as quantum teleportation, quantum dense coding, or secure
quantum key distribution, and is believed to be necessary for the exponential speed-up of
quantum algorithms. In this respect, it is extremely important to be able to detect, quantify
and manipulate the entanglement of a certain system [4].

Remarkably, the characterization of entanglement in relativistic systems has revealed
interesting properties which are absent in the usual non-relativistic regime [5]. In the absence
of relativistic effects, it is possible to independently study the quantum correlations of discrete
[6] or continuous [7] variable systems. This idealization is no longer possible in the relativistic
domain since spin and orbital degrees of freedom become unavoidably mixed [8], and must
be thus considered simultaneously. As a direct consequence, one is urged to reconsider
and understand the peculiarities of entanglement in a relativistic framework. Recently,
the entanglement of relativistic non-interacting particles, and its behavior under Lorentz
transformations, has been extensively studied [9–14]. In the case of interacting particles,
entanglement can be generated in scattering processes at lowest order QED [15, 16]. To the
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best of our knowledge, there has not been a treatment of the generation of entanglement in
interacting fermions described by the laws of relativistic quantum mechanics [17], and it is
the main objective of this work to fill in such gap.

In this paper, we introduce a Lorentz invariant version of the Dirac equation for many-body
systems [18], which allows a covariant treatment of interacting fermions. We shall focus on
a paradigmatic two-fermion coupling which was historically introduced as an effective model
of quark confinement [19–21]. Interestingly enough, we have found an insightful analytical
solution which allows us to fully characterize the confining and entangling properties of this
system. In particular, we have found that the system exhibits simultaneous entanglement in
every degree of freedom, i.e. hyper-entanglement [22], which additionally is not affected by
Lorentz transformations.

This paper is organized as follows. In section 2, we introduce a covariant formulation of
the Dirac equation for many-fermion systems and describe the main features of the interacting
two-body system that shall be studied throughout this work. In section 3, we derive a
complete analytical solution of the system, describing in detail the energy spectrum and
associated eigenstates. We also analyze the consequences of indistinguishability, which
surprisingly lead to non-classical effects, such as squeezing or anti-bunching [23]. In
section 4, we describe hyper-entanglement in the spin and orbital degrees of freedom of
these two relativistic fermions. We show that any finite coupling leads to simultaneous spin
and orbital entanglement, and the system is thus hyper-entangled. Besides, we argue that
these quantum correlations are invariant under Lorentz transforms, and therefore the hyper-
entanglement has an invariant meaning. Finally, we review in appendix A the notion of SU(2)
coherent states [24] which arise in the description of the relativistic eigenstates. Additionally,
in appendix B, we describe the confining properties of this system and describe an interesting
analogy with Cooper pairs in superconducting materials [25].

2. Relativistic two-body Hamiltonian

The properties of a free relativistic spin-1/2 fermion of mass m can be described by means of
the Dirac equation

(γ μpμ − mc)|�〉 = 0, (1)

where |�〉 stands for a Dirac spinor, pμ = ih̄(c−1∂t ,∇) is the 4-momentum operator, h̄ stands
for the Planck constant, and c for the speed of light. Here, γ μ are the well-known Dirac
matrices which fulfil a Clifford algebra

{γ μ, γ ν} = 2gμν, (2)

where gμν = diag(1,−1,−1,−1) is the Minkowski metric tensor. Such algebra (2) may be
satisfied with the following choice of Dirac matrices, known as the standard representation,
γ 0 := β = diag(I2,−I2), and γ j := γ 0αj with αj = off-diag(σj, σj) and σj as the usual
Pauli matrices [17].

Let us mention here that the following non-minimal coupling p → p − imωβr leads to
a relativistic extension of the usual harmonic oscillator, the so-called Dirac oscillator, where
ω represents its frequency [19, 20]. Nonetheless, the extension of such coupling to many-
fermion systems is not straightforward since one must preserve the Lorentz invariance of
the generalized Dirac equation. In this regard, the following Lorentz scalars [18] must be
introduced


 =
N∏

n=1

(
γ μ

n uμ

)
, 
n = (

γ μ
n uμ

)−1

, (3)
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where uμ = (−PμPμ)−1/2Pμ is a time-like vector defined in terms of the total 4-momentum
Pμ = ∑N

n=1 pμn,N represents the total number of fermions, and the many-body Dirac matrices
become γ

μ
n = I ⊗ I · · · I ⊗ γ μ ⊗ I · · · I. The non-minimal coupling p → p − imωβr can now

be extended in a Lorentz invariant fashion, yielding the following relativistic equation:

N∑
n=1

[

n

(
γ μ

n (pμn − imωnx̃μn
) + mc
)]|�〉 = 0, (4)

where we introduce different frequencies for each fermion ωn. As a requirement of Lorentz
invariance, the position operators xμn should be modified under the following prescription
xμn → x̃μn = (xμn − Xμ) − uμ(P ν(xνn − Xν)), with Xμ = N−1 ∑N

n=1 xμn as the center of
mass coordinates. This Dirac equation describes the properties of systems of many relativistic
fermions, and has attracted a considerable amount of attention since it effectively describes
quark confinement. In the particular case of light mesons (i.e. N = 2 and ω1 = −ω2), this
equation accounts for the confinement of a quark–antiquark pair [21]. Unfortunately, it cannot
be completely solved and one must resign with perturbative [26] or partial non-perturbative
solutions [27]. However, these solutions exhibit many of the properties of real mesons, such
as excitation energies [26, 27].

In this paper we shall be concerned with the confinement of two identical fermions (i.e.
N = 2 and ω1 = ω2 := ω), where we have derived a complete analytical solution that
allows an insightful discussion of the confining and entanglement properties of this system.
In the center of mass reference frame1, the relativistic equation (4) leads to the following
Hamiltonian:

H = c√
2
(α1 − α2)(p − imωβ12r) + mc2(β1 + β2), (5)

where α1 = α ⊗ I4,α2 = I ⊗ α, β1 = β ⊗ I, β2 = I ⊗ β, and β12 = β ⊗ β represent the
generalization of the Dirac matrices in the two-body Hilbert space. Here p := (p1 − p2)/

√
2,

and r := (r1 − r2)/
√

2 stand for relative momentum and position operators. If we restrict
to a (2+1)-dimensional Minkowski spacetime, the Dirac matrices reduce to the usual Pauli
matrices αx = σx, αy = σy, β = σz, and the Hamiltonian can be written as follows:

H = c√
2

∑
j=x,y

(σj ⊗ I2 − I2 ⊗ σj )(pj − imωσz ⊗ σzrj ) + mc2(σz ⊗ I2 + I2 ⊗ σz). (6)

In the forthcoming sections, we shall describe in detail the properties of this interesting
compound fermionic system. Indeed, this system provides an ideal scenario where to study
the effective confinement, and relativistic bipartite entanglement.

3. Complete analytical solution

3.1. Beyond quantum optical models

Recently, several single-fermion relativistic models [28–31] have been related to archetypical
models in quantum optics [23]. In this context, it is possible to find exact mappings between
the relativistic Hamiltonians and the Jaynes–Cummings (JC) coupling [32], a fundamental
Hamiltonian that describes the interaction between a two-level atom and a quantized mode

1 The advantage of a Lorentz invariant formulation of this many-body Dirac equation is that we can study its solution
in any given inertial frame and afterwards relate them by means of simple Lorentz transformations. In particular, the
center of mass frame uμ = (1, 0, 0, 0) is the optimal choice to obtain the analytical solution and also to study the
hyper-entanglement of the eigenstates [8].

3
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Figure 1. Relativistic coupling scheme: fermionic spin-flip transitions mediated by the creation or
annihilation of chiral quanta. Due to the relativistic coupling described in equation (8), there are
two possible spin-flip channels of opposed chirality. Namely, |↑↓〉|nl〉 ↔ |↑↑〉|nl + 1〉 ↔ |↓↑〉|nl〉
is a left-handed channel , whilst |↑↓〉|nr 〉 ↔ |↓↓〉|nr + 1〉 ↔ |↓↑〉|nr 〉 is a right-handed one.
According to equations (9) and (10), both channels conserve the total angular momentum.

of the electromagnetic (EM) field. Besides, one also finds mappings onto the anti-Jaynes–
Cummings (AJC) interaction [33], an essential ingredient that appears in the field of trapped
ions [34]. This astonishing connection between relativistic quantum mechanics and quantum
optics has turned out to be extremely fruitful, since several relativistic phenomena have been
predicted using the tools of quantum optics. In this section, we argue that these mappings
cannot be obtained for the two-body Hamiltonian introduced in equation (5). In order to
describe the relativistic Hamiltonian, one must go beyond the standard quantum optical models.

In two-dimensions, the chiral creation-annihilation operators2, which carry dual aspects
of the left- and right-handed symmetry, can be defined as follows:

ar := 1√
2
(ax − iay), a

†
r := 1√

2

(
a
†
x + ia†

y

)
,

al := 1√
2
(ax + iay), a

†
l := 1√

2

(
a
†
x − ia†

y

)
,

(7)

where a
†
x, ax, a

†
y, ay , are the cartesian creation-annihilation operators of the harmonic oscillator

a
†
j = 1√

2

(
1
�̃

rj − i �̃
h̄
pj

)
, and �̃ = √

h̄/mω sets the length scale of the system. Using these
operators, the relativistic Hamiltonian (6) takes a simpler and amenable form

H =

⎡
⎢⎢⎢⎣

� g∗a†
l ga

†
l 0

gal 0 0 g∗ar

g∗al 0 0 gar

0 ga
†
r g∗a†

r −�

⎤
⎥⎥⎥⎦ , (8)

where � := 2mc2 is related to the system rest mass energy, and g := imc2√2ξ controls the
strength of the effective interaction, with ξ := h̄ω/mc2. Considering the two-body spinorial
basis {|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉}, we can understand the relativistic two-body coupling as a four-
level system depicted in figure 1. There, we can see how the transitions between the different
spinorial components are always mediated through the creation or annihilation of chiral quanta.
The particular combination of the chiral operators is demanded by the conservation of the total
angular momentum

Jz = Sz + Lz, (9)

where we have introduced the z-component of the total spin and angular momentum operators

Lz := h̄
(
a†

r ar − a
†
l al

)
, Sz := σz ⊗ I2 + I2 ⊗ σz. (10)

2 Note that these chiral operators describe collective modes of the system, since they are defined in terms of the
relative position and momentum operators p := (p1 − p2)/

√
2 and r := (r1 − r2)/

√
2.
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Let us now compare the relativistic Hamiltonian (8) with quantum optical models
describing the interaction of two-level atoms with quantized modes of the EM field. Since
the relativistic Hamiltonian contains a couple of spin-1/2 particles coupled to a pair of chiral
modes, we should compare it to a quantum optical model involving a pair of two-level atoms
coupled to two modes of EM radiation. The most general quantum optical interaction3 can be
described as

H = �(σz1 + σz2) +
∑
jk

(
gJC

jkσ
+
j bk + gAJC

jk σ +
j b

†
k + h.c.

)
, (11)

where b
†
1, b1, b

†
2, b2 stand for the creation-annihilation operators of the EM field modes,

gJC
jk

(
gAJC

jk

)
is the coupling constant corresponding to a Jaynes–Cummings (anti-Jaynes–

Cummings) interaction between the j th atom and the kth mode [32–34], and � is the detuning.
This Hamiltonian (11) can be understood as a generalization of the usual Tavis–Cummings
model which describes atoms interacting with a single mode of the EM field [35]. In order to
find an exact mapping between Hamiltonians in equations (8), and (11), the coupling constants
gjk must fulfil the following constraints:

gJC
11 + igJC

12 = 0, gJC
11 − igJC

12 = 0,

gJC
21 + igJC

22 = 0, gJC
21 − igJC

22 = 0,

gAJC
11 + igAJC

12 = 0, gAJC
11 − igAJC

12 = 0,

gAJC
21 + igAJC

22 = 0, gAJC
21 − igAJC

22 = 0,

(12)

which only present the trivial solution gJC
jk = gAJC

jk = 0. Therefore, we may conclude that the
relativistic Hamiltonian cannot be mapped onto any generalized two-mode two-atom Tavis–
Cummings model. In this respect, this singular two-body coupling goes beyond standard
quantum optics.

3.2. Relativistic energy spectrum and eigenstates

In the previous section we have proved that the Hamiltonian in (8) cannot be expressed in terms
of well-known quantum optical models. Nonetheless, as we shall discuss in this section, it is
still possible to find the complete energy spectrum and corresponding eigenstates. Therefore,
this two-fermion relativistic system belongs to the small class of exactly solvable few-body
relativistic models. Let us introduce the chiral Fock states

|nr, nl〉 := 1√
nr !nl!

(
a†

r

)nr
(
a
†
l

)nl |vac〉, (13)

where nr, nl = 0, 1, . . . specify the number of right- and left-handed quanta in the two-fermion
system. It is essential to realize that the Hilbert space can be divided in a series of invariant
subspaces H = ⊕∞

nr ,nl=0 Hnrnl
, where each subspace Hnrnl

:= H′
nr ,nl

⊕
H′′

nr ,nl
can be spanned

as follows:

H′
nr ,nl

= span{|+〉|nr, nl〉},
H′′

nr ,nl
= span{|↑↑〉|nr, nl + 1〉, |−〉|nr, nl〉, |↓↓〉|nr + 1, nl〉},

(14)

Here we have introduced the maximally entangled depolarized Bell states |−〉 := (|↑↓〉 −
|↓↑〉)/√2 , and |+〉 := (|↑↓〉 + |↓↑〉)/√2 [37].

3 The most general interaction between N− atoms and M− modes has been studied in [36]. In our case, we should
restrict to two-modes and two-atoms. Besides, due to the indistinguishability of fermions, the atoms and the modes
are restricted to present the same energy (i.e. �E = h̄ω0 sets the atomic energy scale, whereas ω sets the modes
frequency).

5



J. Phys. A: Math. Theor. 41 (2008) 485302 A Bermudez and M A Martin-Delgado

Figure 2. Effective three-level relativistic coupling scheme: in the invariant subspace H′′
nr ,nl

,
the effective Hamiltonian in equation (15) induces spin-flip transitions between three different
levels. Namely, a left-handed AJC interaction induces |↑↑〉|nr , nl + 1〉 ↔ |−〉|nr , nl〉, whilst a
right-handed JC interaction is responsible for |−〉|nr , nl〉 ↔ |↓↓〉|nr + 1, nl〉.

Remarkably, H′
nr ,nl

describes a zero-energy subspace E+nrnl
= 0, whose states |+〉|nr, nl〉

can neither absorb nor emit phonons, they are effectively trapped. This trapping effect occurs
due to the destructive quantum interference between the transitions taking place through
different channels (see figure 1). Therefore, these states are the relativistic analogue of the
so-called dark states in the quantum optical domain, which lie at the heart of significant
effects such as coherent trapping [38], or electromagnetically induced transparency [39]. The
Hamiltonian (8) in the remaining subspaces H′′

nr ,nl
can be expressed as follows:

Heff = �

⎡
⎣ 1 −i

√
ξ(nl + 1) 0

i
√

ξ(nl + 1) 0 −i
√

ξ(nr + 1)

0 i
√

ξ(nr + 1) −1

⎤
⎦ . (15)

Here, the two-body interaction couples three different levels in a ladder configuration by
means of left-handed AJC interaction |↑↑〉|nr, nl + 1〉 ↔ |−〉|nr, nl〉, and a right-handed JC
interaction |−〉|nr, nl〉 ↔ |↓↓〉|nr + 1, nl〉 (see figure 2).

This insightful three-level perspective allows us to exactly diagonalize the two-body
relativistic Hamiltonian (6). Using Cardano–Vietta solution to third-order polynomials, we
obtain the following energies:

E+nrnl
:= 0,

Ejnrnl
:= �

√
4 [1 + ξ(nr + nl + 2)]

3
cos jnrnl

,
(16)

where the index j = 1, 2, 3 refers to the different energy levels, and

jnrnl
:= 1

3
cos−1

[
27(nl − nr)ξ

2 [3(1 + ξ(nr + nl + 2))]3/2

]
+

2π

3
(j − 1). (17)

These eigenstates are represented for different values of the relative coupling strength
parameter ξ in figures 3 and 4.

Once the eigenvalues have been obtained, we may derive the corresponding eigenstates,
which we list below

|E+nrnl
〉 := |+〉|nr, nl〉,

|Ejnrnl
〉 := 1

�jnrnl

(iβjnrnl
|↑↑, nr , nl + 1〉

+ αjnrnl
|−〉|nr, nl〉 + iδjnrnl

|↓↓, nr + 1, nl〉),
(18)

6
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0.5 1.0 1.5 2.0

3

2

1

1

2

3

E
mc 2

ξ

E1n r n l

E2n r n l

Figure 3. Energy spectrum of the relativistic system: representation of the relativistic energy
levels for the first excited states described in equation (16) as a function of the coupling strength ξ .
Here, we observe that the levels corresponding to E1nr nl

, and E2nr nl
are clearly discernible, they

correspond to the external upper and lower branches respectively. Conversely, levels E3nr nl
, and

E+nr nl
are clearer seen in figure 4

0.5 1.0 1.5 2.0

0.4

0.2

0.2

0.4

E

m c 2

ξ

E3n r n l

E+n r n l

E3n r n l

Figure 4. Detailed low-energy spectrum of the relativistic system: representation of the first
excited states corresponding to levels E3nr nl

and E+nr nl
. We clearly observe that the E+nr nl

= 0,
while the remaining levels E3nr nl

lie above or below the zero-energy branch.

where we have defined the following parameters:

αjnrnl
:= �2 − E2

jnrnl
,

βjnrnl
:= �(� + Ejnrnl

)
√

ξ(nl + 1),

δjnrnl
:= �(� − Ejnrnl

)
√

ξ(nr + 1),

�jnrnl
:=

√
α2

jnrnl
+ β2

jnrnl
+ δ2

jnrnl
.

(19)

7
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Here the indexes j = 1, 2, 3 correspond to the three different eigenvalues (16). We have thus
derived a complete solution of the relativistic Dirac equation of two bodies interacting via
a Dirac oscillator coupling. As stated previously, we have proved that this system belongs
to the scarcely populated class of exactly solvable few-body systems in relativistic quantum
mechanics.

3.3. Fermion indistinguishability

Once the exact energy spectrum (16) with its corresponding eigenstates (18) have been derived,
we must consider the consequences of fermion indistinguishability. The symmetrization
postulate states that a system of identical fermions must be described in terms of anti-
symmetrical states. Therefore, the whole Hilbert space H = ⊕∞

nr ,nl=0 Hnrnl
contains states

which are not physically acceptable. Physical states must satisfy the following condition

P21|�(1, 2)〉 = −|�(1, 2)〉, (20)

where P21 stands for the permutation operator that swaps the fermion labels 1 ↔ 2.
Considering the eigenstates in equation (18) under the permutation operator, we obtain the
following expressions:

P21|E+,nr ,nl
〉 = (−1)nr +nl |E+,nr ,nl

〉,
P21|Ej ,nr ,nl

〉 = (−1)nr +nl+1|E+,nr ,nl
〉. (21)

Since these expressions must satisfy the antisymmetric condition in equation (20), the number
of chiral quanta are constrained as follows:

|E+,nr ,nl
〉 ⇒ nr + nl = 2k + 1 : k = 0, 1, 2, . . .

|Ej ,nr ,nl
〉 ⇒ nr + nl = 2k : k = 0, 1, 2, . . . .

(22)

Due to the indistinguishability of the relativistic fermions, the eigenstates |E+,nr ,nl
〉 must

contain an odd number of chiral quanta, whereas |Ej,nr ,nl
〉 are restricted to even number of

chiral quanta. Thus, fermion indistinguishability imposes essential constraints on the allowed
two-particle states which may lead to measurable results. As will be shown in section 4, the
two-body relativistic version of Glauber coherent states [40] can be identified with even and
odd coherent states [41] which present measurable non-classical aspects such as squeezing or
anti-bunching [23]. It is interesting to note that similar effects in a non-relativistic framework
require additional non-linearities in the Hamiltonian, whereas in this relativistic regime they
arise as a consequence of the fermion statistics.

Before concluding this section, we must also describe how the indistinguishable character
of the fermions also affects the nature of physical observables. Identical fermions share the
same physical properties, and therefore acceptable physical observables O(1, 2) cannot depend
on the particle labels. Consequently, physical observables in a system of indistinguishable
must be symmetric under the permutation operator

P21O (1, 2)P†
21 = O(1, 2) ⇒ [O(1, 2), P21] = 0. (23)

From the two-body Dirac oscillator in equation (6), we immediately see that[
H 2D

DO, P21
] = 0, (24)

and thus we can guarantee its symmetric nature. Furthermore, this property also shows that
the permutation operator and the relativistic Hamiltonian have common eigenstates (21). It
is exactly this property which gives rise to the peculiar subdivision of the invariant subspaces
Hnrnl

:= H′
nr ,nl

⊕
H′′

nr ,nl
in equation (14), and the existence of the so-called relativistic dark

states.

8
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4. Relativistic hyper-entanglement

In this section, we report on the relativistic entanglement properties of the eigenstates described
in equations (18). Remarkably enough, these states are simultaneously entangled in every
degree of freedom ( i.e. hyper-entangled). The concept of hyper-entanglement was introduced
for photons [22] in order to outperform Bell state analysis [42] and has been experimentally
tested [43]. In this section we generalize hyper-entanglement to massive particles, spin-1/2
relativistic fermions, where the system becomes simultaneously entangled in spin and orbital
degrees of freedom. We further investigate the regimes where it is possible to obtain maximal
hyper-entanglement.

Let us remark here the relativistic invariant meaning of the results to be described
below. In a seminal paper by Peres et al [8], an intriguing relativistic effect was discussed,
namely, the notion of spin entropy for a relativistic free fermion is not invariant under Lorentz
transformations. This fact leads to a non-invariant notion of spin and momentum entanglement
for pairs of free fermions [10], which would lead to a dubious concept of hyper-entanglement.
However, as we shall justify below, the particular eigenstates of the two-fermion system
considered in this paper belong to a decoherence-free-subspace under the action of Lorentz
boosts [45]. Hence, we can define an invariant spin and orbital entanglement by means of the
von Neumann entropy of the corresponding reduced density matrices.

4.1. Bipartite description of the eigenstates

Before embarking upon the characterization of hyper-entanglement, it is convenient to express
the system eigenstates in the bipartite Hilbert space H = H1 ⊗ H2. Hence, the collective
chiral operators in equation (7) must be expressed in terms of one-body operators

ar = 1√
2
(a1r − a2r ), a†

r = 1√
2

(
a
†
1r − a

†
2r

)
,

al = 1√
2
(a1l − a2l ), a

†
l = 1√

2

(
a
†
1l − a

†
2l

)
,

(25)

where the indexes in
{
ajα, a

†
jα

}
stand for the j = 1, 2 fermion, whereas α = r, l refers to the

mode chirality. These one-body operators satisfy the usual bosonic algebra

[ajα, akβ ] = [
a
†
jα, a

†
kβ

] = 0,
[
ajα, a

†
kβ

] = δαβδjk, (26)

which allow us to rewrite the collective chiral Fock state in equation (13) as follows:

|nr, nl〉 =
nr∑

mr=0

nl∑
ml=0

Cnrnl

mrml
|nr − mr, nl − ml〉1|mr,ml〉2, (27)

where we have introduced the following constants in terms of the usual binomial coefficients
(see equation (A.5) in appendix A)

Cnrnl

mrml
= 1√

2nr +nl

(
nr

mr

) 1
2
(

nl

ml

) 1
2

(−1)mr +ml . (28)

As discussed in appendix A, these states are a particular instance of SU(2) coherent states
[24], which are the SU (2) Lie algebra generalization of the usual Glauber coherent states [40].
These coherent states posses many non-classical properties, such as sub-Poissonian statistics
in the chiral phononic ensemble [44], but we will now focus on their bipartite entanglement.

9



J. Phys. A: Math. Theor. 41 (2008) 485302 A Bermudez and M A Martin-Delgado

4.2. Entanglement in the spin degree of freedom

As mentioned previously, entanglement is an essential resource in quantum information
protocols which must be quantified. To accomplish such task, there are different measures that
capture complementary aspects of entanglement [4]. Nevertheless, in the case of pure bipartite
states, it suffices to obtain the entropy of entanglement since any other measure coincides with
the latter in the asymptotic limit. The entropy of entanglement is defined as the von Neumann
entropy of the reduced density matrix

E(ρ) = −tr1(ρ1 log2 ρ1) = −tr2(ρ2 log2 ρ2), (29)

where ρ = |ψ12〉〈ψ12| is the density matrix corresponding to the pure bipartite state
|ψ12〉 ∈ H1 ⊗ H2, and ρ1 = tr2(ρ), ρ2 = tr1(ρ) stand for the reduced density matrices.

In particular, if we want to characterize the entanglement in the spin degree of freedom,
we should previously trace over the orbital degrees of freedom. The reduced spin density
matrices , associated with the eigenstates in equation (18)

ρ
spin,1
+nrnl

= 1

2
|↑〉〈↑| +

1

2
|↓〉〈↓|,

ρ
spin,1
jnrnl

= |αjnrnl
|2 + 2|βjnrnl

|2
2�2

jnrnl

|↑〉〈↑| +
|αjnrnl

|2 + 2|γjnrnl
|2

2�2
jnrnl

|↓〉〈↓|,
(30)

where the matrices ρ
spin,1
+nrnl

= tr2(trorb|E+nrnl
〉〈E+nrnl

|), ρspin,1
jnrnl

= tr2(trorb|Ejnrnl
〉〈Ejnrnl

|), and
we are using the normalization parameters introduced in equation (19). The corresponding
entropy of entanglement can be obtained using equation (29 )

E spin
+nrnl

= 1

E spin
jnrnl

= −log2

(
1 − λ

spin
jnrnl

) − λ
spin
jnrnl

log2

(
λ

spin
jnrnl

1 − λ
spin
jnrnl

)
,

(31)

where we have introduced the following parameter λ
spin
jnrnl

:= (|αjnrnl
|2 + 2|βjnrnl

|2)/2�2
jnrnl

.
It is important to point out that the maximum spin entanglement is bounded by E spin

max =
log2(dspin) = 1, where dspin = 2 is the dimension of the Hilbert space corresponding to the
spin degrees of freedom (i.e. the density matrices correspond to effective qubits). Hence, it
follows from equations (31) that the eigenstate |E+nrnl

〉 is maximally entangled independently
of the coupling strength ξ . Conversely, in the strong coupling limit 1 � ξ � 2, the eigenstates
{|Ejnrnl

〉} are only partially entangled and show an interesting dependence of the coupling
ξ as shown in figure 5. In the weak coupling regime ξ � 1, it is possible to extract two
states {|E+nrnl

〉, |E3nrnl
〉} which are already maximally entangled. Conversely, in the strong

coupling regime, every state is entangled but only partially. In this respect, we may conclude
that the degree of spin entanglement is highly sensitive to the coupling strength between the
two bodies.

4.3. Entanglement in the orbital degrees of freedom

As mentioned in the introduction, one distinctive feature of relativistic systems is that both
discrete and continuous variables are present in the description of entanglement. Whilst
the spin degree of freedom is associated with discrete variables, continuous variables must
be related to the orbital degrees of freedom. In this case, the Hilbert space dimension is
infinite and the quantification of entanglement becomes rather intricate [7]. In the quantum
information scenario, many of the continuous variable states belong to the relevant family
of Gaussian states, where many tools on entanglement characterization have been developed.

10
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Figure 5. Spin entropy of entanglement: the spin entanglement of the eigenstates {|Ejnrnl
〉}

with the lowest number of quanta (i.e. nr = 1, nl = 0) is represented as a function of the
relativistic coupling strength ξ . In the weak coupling scenario ξ � 1, there is a drastic decrease
of entanglement of states {|E1,nr nl

〉, |E2,nr nl
〉}, whereas the entanglement of |E3,nr nl

〉 attains the
maximum possible value. In the strong coupling regime 1 � ξ � 2, the eigenstates are not
maximally entangled but show a high degree of quantum correlations. Note that the dashed line
corresponds to the bound of maximal entanglement for a pair of qubits Espin

max = 1.

Unfortunately, the relativistic states considered in this work are not Gaussian and therefore
different techniques must be used.

In this section we characterize orbital entanglement by means of the entropy of
entanglement introduced in equation (29), where we need to additionally trace over the spin
degrees of freedom in the reduced density matrices ρ

orb,1
+nrnl

= tr2(trspin|E+nrnl
〉〈E+nrnl

|), and
ρ

orb,1
jnrnl

= tr2(trspin|Ejnrnl
〉〈Ejnrnl

|)

ρorb,1
+nrnl

=
nr∑

mr=0

nl∑
ml=0

λorb
+mrml

P +
mr ,ml

, ρ
orb,1
jnrnl

=
nr +1∑
mr=0

nl+1∑
ml=0

λorb
jmrml

P j
mr ,ml

. (32)

Here, we have introduced the associated projectors

P +
mr ,ml

:= |nr − ml, nl − ml〉1〈nr − mr, nl − ml|1,
P j

mr ,ml
:= |nr + 1 − ml, nl + 1 − ml〉1〈nr + 1 − mr, nl + 1 − ml|1,

(33)

and the following important parameters:

λorb
+mrml

= ∣∣Cnrnl

mrml

∣∣2
,

λorb
j00 = 0,

λorb
j01 =

∣∣δjnrnl

∣∣2

2nr +nl+1�2
jnrnl

, (34)

λorb
j10 =

∣∣βnrnl
j
∣∣2

2nr +nl+1�2
jnrnl

,

λorb
jmrml

= 1

�2
jnrnl

(∣∣αjnrnl

∣∣2∣∣Cnrnl

mr−1ml−1

∣∣2
+ |βjnrnl

|2∣∣Cnrnl+1
mr−1ml

∣∣2
+

∣∣δjnrnl

∣∣2∣∣Cnr +1nl

mrml−1

∣∣2)
,

11
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Figure 6. Orbital entropy of entanglement: the orbital entanglement of the eigenstates {|Ejnrnl
〉}

with the lowest number of quanta (i.e. nr = 1, nl = 0) is represented as a function of the relativistic
coupling strength ξ . The states {|E1,nr nl

〉, |E2,nr nl
〉} are nearly insensitive to the coupling strength,

whereas the entanglement of |E3,nr nl
〉 increases as we enter the strong coupling regime 1 � ξ � 2.

Note that the dashed line corresponds to the bound of maximal entanglement for this pair of qudits
Espin

max = log2 3, which shows that the orbital degree of freedom is not maximally entangled.

where we have used the previously introduced parameters of equations (19) and (28). It is
important to note that although the orbital degrees of freedom correspond to continuous
variables, the reduced density matrices in equation (32) have finite dimension. In this
respect, they correspond to an effective qudit of dimension dorb

+nrnl
= (nr + 1)(nl + 1), and

dorb
jnrnl

= (nr + 2)(nl + 2), whose entropy quantifies entanglement as follows:

Eorb
+nrnl

= −
nr∑

mr=0

nl∑
ml=0

λorb
+mrml

log2 λorb
+mrml

,

Eorb
jnrnl

= −
nr +1∑
mr=0

nl+1∑
ml=0

λorb
jmrml

log2 λorb
jmrml

.

(35)

The orbital entropy of entanglement is fully characterized by equations (34)–(35), which
show that the orbital entanglement of |E+nrnl

〉 is also independent of the coupling strength
ξ . The orbital entropy of entanglement of states {|Ejnrnl

〉} has been depicted in figure 6 as a
function of the two-body coupling strength. With respect to the spin entropy of entanglement
(figure 5), we observe two main differences. Namely, the orbital degree of freedom is not so
sensitive to the coupling strength, and the states are only partially entangled.

4.4. Hyper-entanglement in a relativistic system

As introduced previously, hyper-entanglement between two particles occurs whenever they
are simultaneously entangled in various degrees of freedom. With the results from previous
sections at hand, we can make the main statement of this work, namely, hyper-entanglement
in spin and orbital degrees of freedom can be generalized to relativistic massive fermions. It
follows from figures 5 and 6 that any eigenstate of the system is simultaneous entangled in
spin and orbital degrees of freedom for ξ > 0,

0 < E spin
α,nr ,nl

� 1, 0 < Eorb
α,nr ,nl

� log2 dorb
αnrnl

, (36)

where we have introduced α ∈ {+, 1, 2, 3}.
12
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The results presented so far have been obtained in the center of mass inertial frame, also
known as the Lorentz rest frame. This particular inertial frame was proposed as a special
frame where an invariant definition of entanglement could be derived [8]. It was later shown
that the spin and orbital degree of entanglement is not Lorentz invariant, namely, Lorentz
transformations transfer entanglement between the spin and orbital degrees of freedom [10].
In this respect, the concept of relativistic hyper-entanglement must be revisited and its Lorentz
invariance deserves a more detailed study.

Let us say a few words about the invariance meaning of the two-body relativistic hyper-
entanglement introduced in this work. From the results in [10], one would expect the
degree of spin and orbital entanglement in equations (31) and (35), and thus the notion
of hyper-entanglement, to be modified under Lorentz boost. Nonetheless, it has been proved
that the states {|nr, nl〉1, |nr, nl〉2} belong to invariant subspaces with respect to Lorentz
transformations [45]. Since these states are the building blocks of our relativistic eigenstates
(see equation (27)), we might conclude that this relativistic system provides us with a physical
implementation of Lorentz-decoherence-free subspaces (i.e. there is no decoherence or loss
of entanglement due to Lorentz boosts) [46, 47]. As a direct result, we expect no transfer
of entanglement between the spin and orbital degrees of freedom to occur in this relativistic
two-body system, and therefore we can claim that the notion of relativistic hyper-entanglement
presented here does not depend on the inertial reference frame.

5. Conclusions

In this work, we have studied the confinement and entanglement properties in a relativistic
two-fermion system described by the Dirac equation. We have thoroughly described how to
generalize the Dirac equation to many-body systems maintaining its Lorentz covariance. In
the particular case of an interacting system where the fermions are non-minimally coupled
through a relativistic spring, we have obtained a complete analytical solution. In this respect,
the two-dimensional two-fermion Dirac oscillator belongs to the small class of exactly solvable
few-fermion systems. Additionally, we have seen how a series of quantum optical concepts
such as dark states, and coherent trapping, or important non-classical effects such as squeezing,
anti-bunching and sub-Poissonian statistics arise in this relativistic setting.

The analytical expressions for the two-fermion eigenstates allowed us to fully characterize
the entanglement properties of this system. We have studied the rise of quantum correlations
in the spin and orbital degrees of freedom as a consequence of the relativistic coupling.
Furthermore, these correlations are simultaneous for any finite interaction, and therefore we
may claim that the fermions are hyper-entangled. We have also argued that this relativistic
extension of the concept of hyper-entanglement to massive relativistic fermions has a Lorentz
invariant meaning, and therefore is independent of the inertial frame to be considered. To the
best of our knowledge, these are the first results on the entanglement of interacting fermions
governed by the Dirac equation.

Some other additional properties have been left to the appendices, where we have
shown that the bipartite eigenstates are expressed in terms of generalized SU (2) coherent
states, which allow us to interpret the full relativistic coupling as a double Mach–Zehnder
interferometer. In the appendices, we have as well discussed the effective confinement that
the non-minimal coupling provides. Surprisingly, we have brought out several analogies
with superconducting Cooper pairs. Although the pairing mechanism arises from different
mechanism, this relativistic compound system shows an interesting resemblance to the pairing
of electrons in superconducting materials.

13
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Appendix A. SU (2) coherent states

In this appendix we review the properties of two-mode SU (2) coherent states, which can
also be found in the literature as spin coherent states. These states were introduced as a
generalization of the usual Glaubler coherent states [40] for arbitrary Lie groups [24, 48, 49].
In this case, we shall restrict our attention to the SU (2) group, whose generators {J+, J−, J3}
have the following Lie algebra:

[J3, J±] = ±J±, [J+, J−] = 2J3. (A.1)

The generators of this algebra (A.1) can be expressed in terms of the single-particle chiral
bosonic operators described in equations (25), where we find the following chiral Schwinger
representations:

J r
3 = 1

2

(
a
†
1ra1r − a

†
2ra2r

)
, J r

+ = a
†
1ra2r = (J r

−)†

J l
3 = 1

2

(
a
†
1la1l − a

†
2la2l

)
, J l

+ = a
†
1la2l = (J l

−)†.
(A.2)

The Lie algebraic commutators in equation (A.1) follow directly from the bosonic commutation
relations in equations (26). The SU (2) coherent states are defined by means of the generalized
displacement operator of the corresponding SU (2) Lie algebra, which might be disentangled
using the results in [48]

Uz,r = ez(J r
+ −J r

−) = e−tan|z|J r
+ elog(cos−2|z|)J r

3 etan|z|J r
− ,

Uz,l = ez(J l
+−J l

−) = e−tan|z|J l
+ elog(cos−2|z|)J l

3 etan|z|J l
− ,

(A.3)

where we restrict to z ∈ R. Once the displacement operator has been factorized, we can easily
obtain the right- and left-handed SU (2) coherent states as the displaced vacuum4

|z, nr〉 = cosnr |z|
nr∑

mr=0

(
nr

mr

)
(−tan|z|)mr |nr − mr〉1|mr〉2,

|z, nl〉 = cosnl |z|
nl∑

ml=0

(
nl

ml

)
(−tan|z|)ml |nl − ml〉1|ml〉2,

(A.4)

with the usual binomial coefficients(
n

m

)
= n!

(n − m)!m!
. (A.5)

SU (2) coherent states become experimentally accessible in the field of quantum optics [50, 51],
where parametric processes allow the required transformation of photons between different
modes in equation (A.4). In the relativistic setting, they arise naturally as the eigenstates of
the two-body Hamiltonian (6) for specific choice of the parameter z = π/4,

|π/4, nr〉 = 1√
2nr

nr∑
mr=0

(
nr

mr

)
(−1)mr |nr − mr〉1|mr〉2,

|π/4, nl〉 = 1√
2nl

nl∑
ml=0

(
nl

ml

)
(−1)ml |nl − ml〉1|ml〉2,

(A.6)

4 The Lie algebraic vacuum is defined as J r−|vac〉 = 0, and therefore corresponds to |vac〉 = |nr〉1|0〉2 (idem for J l−).
In this regard, the corresponding vacuum can be interpreted as a chiral Fock state in the first particle mode, whereas
the usual bosonic vacuum in the second particle mode.

14



J. Phys. A: Math. Theor. 41 (2008) 485302 A Bermudez and M A Martin-Delgado

ar

al

ar

al

a1r

a1 l

a1r

a1 l

a2r

a2 l

a2r

a2 l

acm
r

acm
l

acm
r

acm
l

Figure A1. Double Mach–Zehnder interferometer: the initial beam splitters convert the incoming
single-particle modes {ajα, a

†
jα} into collective modes corresponding to the relative and center of

mass coordinates. The center of mass modes evolve without dephasing inside the interferometer
(i.e. free particle Hamiltonian), whereas the modes corresponding to the relative coordinates
are subjected to a dephasing caused by their coupling to the spinorial levels (i.e. interacting
Hamiltonian). The final beam splitters recombine the modes to express the solution in the bipartite
Hilbert space.

which coincide with the chiral Fock states in relative coordinates that appear in equation (27 )

|nr, nl〉 =
nr∑

mr=0

nl∑
ml=0

Cnrnl

mrml
|nr − mr, nl − ml〉1|mr,ml〉2, (A.7)

where we have introduced the following constants:

Cnrnl

mrml
:= 1√

2nr +nl

(
nr

mr

) (
nl

ml

)
(−1)mr +ml . (A.8)

It is also interesting to point out that the generalized displacement operator in equation (A.3),
particularized to z = π/4, can be interpreted as a simple 50 : 50 quantum beam splitter [52]
that is mixing the chiral bosonic modes

Uπ
4 ,r = e

π
4 (a

†
1r a2r−a1r a

†
2r ) U π

4 ,l = e
π
4 (a

†
1l a2l−a1l a

†
2l ). (A.9)

Hence, SU (2) coherent states can be simply obtained applying a 50 : 50 beam splitter
to a single Fock state populating one mode. This observation allows us to reinterpret the
relativistic Hamiltonian in equation (5) in terms of a double Mach–Zehnder interferometer
(see figure A1).

Appendix B. Lorentz invariant confinement

As discussed previously, the non-minimal coupling introduced in equation (4) effectively
describes quark confinement in hadrons. In the particular case of mesons (i.e. N = 2, and
ω1 = −ω2), this equation accounts for the confinement of a quark–antiquark pair [21] and
predicts many of the properties of real mesons, such as excitation energies [26, 27]. In this
section, we shall be concerned with the confinement of two identical fermions subjected
to the Hamiltonian in equation (6). Surprisingly, we find many analogies between this
Lorentz invariant pairing mechanism and the pairing of electrons in superconducting materials
[25, 53, 54]. However, let us clarify that the origin of these pairings is completely different.
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Figure B1. Fermionic spin-flip transitions in the weak coupling regime: the low energy sector
is described by an effective two-level system, where spin-flips occur along two different channels
that include virtual two-phonon transitions and spin-polarized states become decoupled.

On the one hand, pairing in superconductors arises as a many-body effect where the lattice
phonons and the Fermi sea provide the essential ingredients. On the other hand, the relativistic
pairing is introduced as an effective coupling in equation (4), and therefore we deal with a
single two-body system.

Below, we describe the resemblance of these relativistic fermionic pairs and the usual
Cooper pairs in BCS theory [25, 54]. We have found that, in analogy to the pairing of Cooper
pairs, binding occurs regardless of the interaction strength. Additionally, we have found a
similar scaling of the energy gap in the weak coupling regime, which allows us to identify
the relativistic ω with the lattice phonon Debye frequency ωD in superconductors. Besides,
the relativistic bound pairs are also in a spin singlet state, and present a spherically symmetric
onion-like structure in the probability distribution. On the other hand, a strong interaction
leads to remarkable differences with respect to BCS Cooper pairs. In this case, more than
one bound pair can be built, which in any case is not in a singlet state but rather in a linear
superposition of singlet and triplet states. Furthermore, phonons become unfrozen as the
coupling strength is raised and dynamically contribute to the pairing mechanism.

B.1. Weak coupling regime

The standard description of Cooper pairs in superconducting solids is usually performed
in a weak coupling regime, where a slightly phonon-mediated attractive interaction binds
electrons which lay close to the Fermi surface. We shall thus consider the relativistic two-
fermion Hamiltonian in equation (6) in such limit of weak coupling ξ � 1. In this regime, the
spin-polarized levels become decoupled from those responsible for the low-energy properties
(see figure B1).

The effective Hamiltonian describing the weak coupling in the low-energy sector can be
obtained by adiabatic elimination of the spin polarized levels {|↑↑〉, |↓↓〉} as follows:

Heff := h̄ω
(
a†

r ar − a
†
l al

) [
1 −1

−1 1

]
, (B.1)

where the allowed transitions can take on two different channels via the consecutive creation-
annihilation of right- or left-handed phonons. This process can be understood as an instance
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of a superexchange coupling between the spins |↑↓〉 ←→ |↓↑〉 driven by a second-order
two-phonon process where a chiral phonon is virtually created and then annihilated. There
exist two different exchange paths, as seen in figure B1, depending on the left- or right-handed
chiralities of the virtual phonons involved in the process. This effective Hamiltonian (B.1)
can be exactly diagonalized yielding the eigenvalues

Eeff
+nrnl

:= 0, Eeff
−nrnl

:= 2h̄ω (nr − nl), (B.2)

with the following associated eigenstates

|Eeff
+nrnl

〉 := |+, nr , nl〉 ⇒ nr + nl = 2k + 1 : k = 0, 1, 2, . . .

|Eeff
−nrnl

〉 := |−, nr , nl〉 ⇒ nr + nl = 2k : k = 0, 1, 2, . . . ,
(B.3)

where the anti-symmetric character of the fermionic states has already been considered.
Therefore, the low-lying solution in the weak coupling regime can be described by the
maximally entangled Bell states in the spin degree of freedom, and chiral Fock states in
the orbital degree of freedom.

Furthermore, these states describe a bound fermion pair. In order to show that such
binding occurs, we must show that the inter-particle distance only attains finite values. Let
us introduce the square-distance operator 
 := x2 + y2, where x := (x1 − x2)/

√
2 and

y := (y1 − y2)/
√

2 denote the space coordinate operators for the relative fermionic distance.
Note that this operator is physically acceptable since is satisfies the constraint in equation (23).
The expectation values in the weak-coupling eigenstates (B.3) are

〈
〉± = �̃2

√
2
(1 + nr + nl), (B.4)

which always remain finite. Therefore, we observe the crucial property that this system shares
with a non-relativistic Cooper pair, namely, the pair of relativistic fermions are bounded in
pairs even for a weak attraction ξ � 1.

Another fundamental property that occurs in standard Cooper pairs is the presence of
an energy gap between the paired energy level and the Fermi surface. This energy gap
is responsible for the stability of Cooper pairs with respect to free fermion pairs and is
proportional to the lattice Debye frequency �E ∼ h̄ωD . In the relativistic regime, we observe
that the energy gap is

�E−nrnl
= 2h̄ω (nr − nl), (B.5)

and therefore the only stable pair (i.e. �E � 0) is that described by the spin-singlet state when
nl � nr . In this sense we obtain a spin-singlet bound pair which clearly resembles the situation
in standard Cooper pairs where the fermions are also in the singlet state. Furthermore, we
can observe from this discussion that the relativistic gap is proportional to the Dirac string
frequency �E ∼ h̄ω, which plays the role of the usual Debye frequency in superconducting
materials. Finally, to take this comparison further, we should study the properties of the
stable pair eigenstates in equation (B.3) and compare them to the non-relativistic Cooper pair
features.

Spin degrees of freedom. In BCS theory, Cooper pairs display a singlet state in the spin degree
of freedom. We observe in equation (B.3) that the stable bound fermionic pair state has also
a spin-singlet component.

Orbital degrees of freedom. In BCS theory, Cooper pairs display a spherically symmetrical
wavefunction with an onion-like layered structure. We directly observe from figure B2
that relativistic bound pair probability distribution ρeff

−nrnl
(r) displays a similar spherically

symmetric onion-like structure.
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Figure B2. Spatial probability density profiles for weak coupling stable pairs ρeff
nr nl

(r) :=
Trspin(〈r|Eeff−nr nl

〉〈Eeff−nr nl
|r〉) with nl � nr . This figure corresponds to probability density ρeff

11 (r),

with r = |r1 − r2|/
√

2.

B.2. Strong coupling regime

In this section we study the pairing properties of the two-body relativistic system in the strong
coupling regime ξ � 1. In this limit we must consider the complete four-level structure of the
system (see figure 1 ). In figure 3, we observe that two levels E2,nr ,nl

, E3,nr ,nl
become stable

pairs with a certain gap �E2,nr ,nl
< �E3,nr ,nl

< 0. Therefore, the strong coupling gives rise
to a couple of stable bound fermionic states, namely,

|E2,nr ,nl
〉 := 1

�2nrnl

(iβ2nrnl
|↑↑, nr , nl + 1〉 + α2nrnl

|−〉|nr, nl〉 + iδ2nrnl
|↓↓, nr + 1, nl〉);

|E3,nr ,nl
〉 := 1

�3nrnl

(+iβ3nrnl
|↑↑, nr , nl + 1〉 + α3nrnl

|−〉|nr, nl〉 + iδ3nrnl
|↓↓, nr + 1, nl〉),

(B.6)

whose spatial probability distribution ρjnrnl
(r) has been represented in figure B3 in the case

of nr = nl = 1. We can clearly observe that the density profile preserves the spherically
symmetric onion-like structure. Nonetheless, noteworthy differences arise with respect to the
weak coupling regime (compare to the top figure B2).

Furthermore, these two stable states form a fermionic bound pair since the inter-particle
distance is finite

〈
〉2 = �̃2

√
2

[
(2 + nr + nl) − α2

2nrnl

�2
2nrnl

]
, 〈
〉3 = �̃2

√
2

[
(2 + nr + nl) − α2

3nrnl

�2
3nrnl

]
. (B.7)

We may conclude that the relativistic pairing mechanism leads to bound pairs in the strong
coupling regime, which display substantial differences with respect to the weakly coupled
bound states in equation (B.3). It follows from equations (B.6) that the bound pairs are not
in a singlet state but rather in a linear superposition of different spin singlet and triplet states
entangled with different orbital Fock states.

It is also instructive to compare the orbital degrees of freedom of bound pairs in the
weak and strong coupling limits. The weakly coupled states in equation (B.3) are in orbital
Fock states, which represent a certain number of vibrational phonons which are frozen in
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Figure B3. Spatial probability density profiles for strong coupling ξ � 1 stable pairs
ρjnr nl

(r) := Trspin(〈r|Ejnrnl
〉〈Ejnrnl

|r〉) with nr = 1, nl = 1. Top figure corresponds to the
probability density of the stable pair ρ211(r), with r = |r1 − r2|/

√
2. Bottom figure represents the

probability density of the stable pair ρ311(r).

this limit. On the other hand, strongly coupled states in equations (B.6) cannot be described
by a single Fock state, and therefore the vibrational phonons acquire a dynamical behavior
|nr +1, nl〉 � |nr, nl〉 � |nr, nl+1〉, which is a clear sign of strong coupling in superconductors
[55, 57]. We may conclude that the relativistic chiral phonons, responsible for the gluing
mechanism, become unfrozen as the coupling becomes stronger and contribute to the effective
attraction in a dynamic phenomenon. This is reminiscent of a (s, p)-wave symmetry of a
SC order parameter. Similar types of superconducting states appear in some quantum liquids
like superfluid He3: the so-called A- and B-phases exhibit different patterns of spin-orbit
symmetry breaking [58, 59]. Layered materials like the ruthenates also exhibit unusual
symmetry properties like triplet superconductivity [60–62]. We also observe that the strong
pairing mechanism leads to a couple of possible stable bound pairs (B.6), whereas the weak
coupling only produces one stable bound pair. Furthermore, the energy gap displayed by the
bound pairs also depends on the strength of the coupling.
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